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In a large number of measuring and characterization methods, the sphere
size distribution of particles embedded in a medium has to be estimated from
profile radii observed in cross sections or thin slices. On the one hand, this
is a typical problem of density estimation. For that reason, kernel estimators
may be applied. On the other hand, the computation of the sphere size
distribution from the profile size distribution requires the inversion of an
integral equation. In the case of cross sections or infinitely thin slices, this is
an ill-posed problem which can be solved with specific methods as, e.g.,
Tikhonov regularization. In this contribution we propose a method for un-
folding the sphere size distribution given a sample of profile radii which
combines the advantages of kernel estimators with those of regularization
methods. In order to study and test this method, Monte-Carlo simulations
have been performed. The results demonstrate that the method is reliable
and leads to properly unfolded sphere size distributions. Finally, the method
has been applied to experimental data obtained from transmission electron
microscopy images of several polymer blends. The results demonstrate that
the new method is a valuable tool for data analysis. Q 1997 Academic Press
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1. INTRODUCTION

There is a large number of measuring and characterization methods in very
different disciplines as, e.g. physics, chemistry, metallurgy, biology, geology, and
medicine, where the sphere size distribution of particles embedded in a medium
has to be estimated. Often, the spherical particles cannot be observed directly and
circular profiles obtained by taking cross sections through the sample or by preparing
thin slices of the sample are studied in order to get information about the sphere
size distribution. Obviously, the radii of the profiles are smaller than the radii of
the corresponding spheres. Therefore, the problem of unfolding the sphere size
distribution given a sample of profile radii—a problem well-known as Wicksell’s
corpuscle problem [1]—arises. This problem can be avoided if it is possible to use
the information of two parallel planes with known distance, a so called disector.
In this case the problem is fully determined and it is not necessary to solve Wicksell’s
problem [2, 3], but this technique cannot be applied in any case.

A specific problem where the unfolding of sphere size distributions is of interest,
concerns blends of two immiscible thermoplastics. Many of these materials have a
morphology with one component building a matrix in which approximately spherical
particles of the other component are randomly dispersed. The particle radii range
from about 50 nm up to several em, and the morphology of such blends can be
characterized by studying thin slices of 50–200 nm thickness with transmission
electron microscopy (TEM). In that way, several thousand profile radii can be
measured. These profiles can be used to unfold the sphere size distribution making
it possible to relate this quantity to the conditions during preparation of the blend
or the rheological properties of its melt [4–11].

The estimation of the sphere size distribution from a sample of profile radii may
be considered as a combination of two problems. On the one hand, it is a typical
problem of density estimation for which usually kernel estimators [12] are used.
The application of kernel estimators has been proposed and discussed in [13–15].
This approach looks promising, but there remain some open questions: the result
obtained by a kernel estimator depends on the width of the kernel. This parameter
controls the smoothness of the result and has essentially the same meaning as the
bandwidth of a filter for smoothing noisy data. There is, however, no method for
the optimal estimation of this parameter available and it must be adjusted manually.
Furthermore, the result for the sphere size distribution may have negative values
and it is not properly normalized.

On the other hand, in the case of cross sections or infinitely thin slices the
determination of the sphere size distribution from the profile size distribution
requires the inversion of an integral equation of the first kind. This is an ill-posed
problem (see [16] for a definition of ill-posed problems) with the consequence that
the condition number of a set of linear equations approximating this integral equa-
tion becomes worse if the number of discrete points is increased [17]. In order to
avoid the resulting instability, regularization methods [18] should be used. The
determination of the sphere size distribution by calculation of a histogram of the
profile radii and subsequent application of Tikhonov regularization has been pro-
posed and discussed in [19, 20]. There is a parameter controlling the smoothness
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of the result but in contrast to the work about kernel estimators, methods for the
optimal estimation of this parameter have been applied. In addition, it was shown
in [20] that positivity constraints can be taken into account in such a way that the
result for the sphere size distribution does not have negative values. Nevertheless,
there are some problems due to the histogram of the profile radii: the result for
the sphere size distribution depends slightly on the number and the distribution of
the histogram’s bins. In addition, the statistical properties of the histogram can only
approximately be taken into account. Difficulties arise especially in the case of a
considerable number of empty bins.

In this contribution we propose a method for unfolding sphere size distributions
given a sample of profile radii which combines the advantages of the kernel estima-
tors with those of the regularization methods; on the one hand, it is shown in what
way a nonnegative and properly normalized result for the sphere size distribution
can be defined. Furthermore, a method to estimate the optimal degree of smoothness
is presented. On the other hand, the method does not require the construction of
a histogram from the profile radii. The method has been studied using simulated
data. In addition, it has been applied to experimental data obtained from TEM
images of several polymer blends.

In the following section the well-known integral equation relating the profile size
distribution to the corresponding sphere size distribution is presented. The method
for unfolding sphere size distributions is described in Section 3. Section 4 includes
the results of the study based on simulations. The experiences and results with
experimental data are summarized in Section 5. Details about the numerical compu-
tations in connection with the unfolding are outlined in the Appendix.

2. RELATION BETWEEN THE PROFILE AND
THE SPHERE SIZE DISTRIBUTION

When unfolding the sphere size distribution q(R) given a sample r1, ..., rn of
profile radii, the relation between this distribution and the profile size distribution
p(r) must be known. This relation depends on the thickness d of the slices under
investigation. In addition it must be kept in mind that profiles with radii below
some resolution limit « can usually not be resolved. A consequence of this resolution
limit is that the sphere size distribution q(R) can only be unfolded for radii R $ «.

The relation between both distributions has been studied and discussed in detail
(see, e.g., [19, 21–23]). Assuming

• that the particles are distributed randomly and homogeneously,

• that the particles are opaque,

• that overlapping particles can be neglected, and

• that effects due to the rim of the slice can be neglected,

the equation

p(r) 5
d

d 1 2R
q(r) 1

2
d 1 2R

ERmax

r

r

ÏR2 2 r2
q(R) dR, « # r # Rmax , (1)
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can be derived. In this equation, Rmax denotes an upper limit of the sphere radius and

R 5 ERmax

«
ÏR2 2 «2 q(R) dR (2)

is a normalization factor, so that

ERmax

«
p(r) dr 5 1 (3)

holds. The first term in Eq. (1) is caused by spheres with centers inside the slice.
For these spheres the true radii are obtained. The second term is due to spheres
cut by the slice, but with centers outside the slice. For these spheres, radii smaller
than the true radii are measured. It should be mentioned that Eq. (1) is an Abel
integral equation of the first kind for infinitely thin slices (d 5 0) and else it is an
Abel integral equation of the second kind. In the former case the ill posedness
of the sphere size distribution problem corresponds to a half-differentiation [24].
Furthermore, it should be mentioned that the more general relations, including
overprojection, capping angles, and resolution threshold, can be found in [25].

For the unfolding method introduced in the following section, the relation be-
tween the cumulative sphere size distribution function

P(r) 5 Er

«
p(r9) dr9 (4)

and the scaled sphere size distribution

h(R) 5
1

d 1 2R
q(R) (5)

is needed. Taking the normalization of q(R)

ERmax

«
q(R) dR 5 1 (6)

into account, integration of Eq. (1) leads to

P(r) 5 1 2 2 ERmax

r
Sd

2
1 ÏR2 2 r2D h(R) dR. (7)

Defining the integral operator K according to

(Kh)(r) 5 2 ERmax

r
Sd

2
1 ÏR2 2 r2D h(R) dR for « # r # Rmax (8)

and the function I(r) by

I(r) 5 1, « # r # Rmax , (9)

this integral equation can be written as

(Kh) 5 I 2 P. (10)
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3. A METHOD FOR UNFOLDING THE SPHERE SIZE DISTRIBUTION

In the first part of this section, the result for the sphere size distribution is defined
using Tikhonov regularization for a given value of the so-called regularization
parameter. As indicated in the Introduction, this parameter controls the degree of
smoothness of the result, and it has a strong influence on the unfolded sphere size
distribution. For that reason a procedure to estimate an appropriate value of this
parameter is presented in the second part of this section. In the last part, intervals
characterizing the statistical variance of the unfolded sphere size distribution are in-
troduced.

3.1. Density Estimation by Tikhonov Regularization

The starting point of the unfolding method based on Tikhonov regularization is
the empirical cumulative distribution function P̂(r) of the sample r1, ..., rn of profile
radii. The empirical cumulative distribution function is a consistent estimate of the
cumulative distribution function P(r) and can be written as

P̂(r) 5
1
n O

n

i51
uri

(r) (11)

with

ua(r) 5 H0, r , a,

1, r $ a.
(12)

Using Tikhonov regularization, an estimate ĥl of the scaled sphere size distribu-
tion h can be defined by the minimum of

V(l) 5 iP̂ 2 (I 2 (Kh))i2 1 liLhi2 (13)

with respect to h. Alternatively, the estimate ĥl can be written as

ĥl 5 K 21(l)(I 2 P̂) (14)

with

K21(l) 5 (K tK 1 lLtL)21K t. (15)

In these equations L denotes the second derivative, the norm i?i of an arbitrary
function f is given by

i f i2 5 ERmax

«
f 2(s) ds, (16)

and l denotes the regularization parameter. With an appropriate value of this
parameter, the first term on the right-hand side of Eq. (13) forces the result to be
compatible with the data. The second term leads to a smooth estimate ĥl of the
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scaled sphere size distribution h. An estimate of q̂l of the sphere size distribution
q itself can be obtained by normalization:

q̂l(R) 5
ĥl(R)

eRmax
« ĥl(R9) dR9

. (17)

So far it has not been taken into account that the scaled sphere size distribution
h is nonnegative. In addition, Eqs. (1) and (5) imply normalization according to

2 ERmax

«
Sd

2
1 ÏR2 2 «2D h(R) dR 5 1. (18)

An estimate satisfying these constraints can be obtained by restricting minimization
of the functional V(l) to nonnegative and properly normalized functions. In this
case, ĥl can no longer be written in a form similar to Eq. (14).

3.2. Optimal Estimation of the Regularization Parameter

It is obvious that the quality of the estimate ĥl depends strongly on the regulariza-
tion parameter l which has essentially the same influence on the result as the
bandwidth of a filter for smoothing noisy data. If this parameter is too small, the
result will show oscillations. On the other hand, the result will be oversmoothed if
this parameter is too large. Thus, a good and reliable procedure for the estimation
of the regularization parameter is necessary.

The procedure for the estimation of the regularization parameter described in
this contribution is based on the principle of the SC-method (SC for self-consistent).
This method has been proposed in [26] and led to better results than other well-
known procedures for this purpose. In addition, the SC-method has successfully
been applied to solve various linear as well as nonlinear ill-posed problems [4, 20,
27–32]. Other possible methods to estimate a value of the regularization parameter
are the cross-validation method and the discrepancy method [33].

In order to introduce the SC-method, the error

dh 5 ih 2 ĥli2 (19)

of the estimate ĥl is considered. This error is a realization of a random variable
denoted by Dh . The expectation value,

EDh 5 EDh(h, l, n), (20)

of this random variable depends on the scaled sphere size distribution h, the regular-
ization parameter l, and the number of profile radii n. A good value of the regulariza-
tion parameter should minimize this quantity:



e
EDh(h, e, n) ue5l 5 0. (21)
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Actually, this equation cannot be solved in practice, because the scaled sphere size
distribution h is not known.

The idea of the SC-method is to replace the scaled sphere size distribution h in
Eq. (21) by the best estimate which can be obtained from the data. The distribution
h is, therefore, replaced by ĥl leading to the equation



e
EDh(ĥl, e, n) ue5l 5 0. (22)

This equation defines a value lSC for the regularization parameter. If this value
leads to a good estimate ĥl, the replacement of the distribution h by the estimate
ĥl is justified and Eq. (22) should define a good value for the regularization parame-
ter. By solving Eq. (22) the regularization parameter has therefore been estimated
in a self-consistent manner.

In principle, the quantity EDh(h, l, n) can be evaluated by a Monte-Carlo proce-
dure. This is, however, very time consuming, and an explicit expression of the
quantity EDh(h, l, n) should be known in order to apply the SC-method in practice.
If the positivity constraints are taken into account, such an explicit expression can
hardly be derived. Because of these constraints it is even impossible to obtain a
more explicit formula of the estimate ĥl defined by the minimum of V(l). On the
other hand, it will be shown in Section 4 that the positivity constraints do not have
a crucial influence on the optimal regularization parameter. For that reason the
SC-method can be applied without taking the constraints into account. In this case,
the estimate ĥl is given by Eq. (14). Using this relation as well as Eqs. (4), (10),
and (11) the expression

EDh(h, l, n) 5 ih 2 K21(l)(I 2 Kh)i2

1
1
n
ERmax

«
iK21(l)uri2 u(Kh)9(r)u dr

2
1
n

iK 21(l)(I 2 Kh)i2 (23)

can be derived by a straightforward calculation. The first term on the right-hand
side of this equation is due to the estimator’s bias, whereas the second and the
third terms are a consequence of the variance.

3.3. Statistical Variance of the Estimate

Whenever a quantity is estimated, it is desirable to obtain, in addition to the
estimate itself, information about its statistical variation. For that reason, confidence
intervals should be calculated. These intervals are usually defined in such a way
that the true value of the quantity is in the interval with a probability of 68%. In
many statistical contexts confidence levels of 95% or more are chosen.

An estimate obtained by regularization is affected by two errors, one being a
bias caused by regularization and the other one being a statistical error due to the
statistical properties of the data. In the case of an ill-posed problem, the bias cannot
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be estimated and confidence intervals can, therefore, not be defined. Despite this
fact, error intervals describing the influence of the statistical properties of the data
are useful for the interpretation of the result. Denoting the variance of the random
variable corresponding to ĥl(R) by s 2(R), such intervals can be defined by

[ĥl(R) 2 s(R), ĥl(R) 1 s(R)] for ĥl(R) 2 s(R) $ 0
(24)

[0, ĥl(R) 1 s(R)] for ĥl(R) 2 s(R) , 0.

Normalization according to Eq. (17) leads to error intervals for the estimate q̂l(R)
of the sphere size distribution.

To estimate these error intervals, the variances s 2(R) must be evaluated. If the
constraints are neglected, Eqs. (4), (10), (11), and (14) can be used to derive an
explicit expression for the variances,

s 2(R) 5
1
n
ERmax

«
((K 21(l)ur)(R))2 u(Kh)9(r)u dr

2
1
n

(K 21(l)(I 2 Kh)(R))2, (25)

which can approximately be evaluated if the true scaled sphere size distribution h(R)
is replaced by the estimate ĥl(R). Compared to the estimation of the regularization
parameter with the SC-method and the evaluation of the quantity EDh(h, l, n),
the positivity constraints can, however, not be simply neglected, because they have
a considerable influence on the estimate ĥl(R). For that reason it is necessary to
account for the positivity constraints and a method to do this, without performing
a time-consuming Monte Carlo simulation, is included in the Appendix in which
the numerical computations are described.

4. RESULTS FOR SIMULATED DATA

In order to study and test the unfolding method presented in the preceding section,
Monte-Carlo simulations have been performed. First, a sphere size distribution was
chosen and the corresponding profile size distribution was computed by numerical
integration according to Eq. (1). For that profile size distribution 200 samples with
n radii each were generated. For each sample the estimate ĥl and the corresponding
error dh were calculated in dependence on the regularization parameter l which
was varied from l 5 10215 up to l 5 1022. This was done twice: on the one hand,
positivity constraints and normalization were taken into account and, on the other
hand, these constraints were neglected. By averaging the values of dh over the 200
samples, the expected error EDh(h, l, n) in dependence on the regularization
parameter l was obtained for the case that constraints are taken into account, as
well as for the case that they are neglected. In addition, the regularization parameter
defined by the SC-method was estimated for each sample.

Such Monte-Carlo simulations have been performed for a unimodal and for a
bimodal sphere size distribution using 200 samples with n 5 1000, 2000, and 5000
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FIG. 1. Unimodal (solid line) and bimodal (dashed line) sphere size distribution used to test the
unfolding method (a). The corresponding profile size distributions, (b) and the cumulative profile size
distribution functions, (c) are also shown. The straight line in (a) marks the thickness d of the slices.

profile radii. Figure 1 shows both sphere size distributions, together with the corre-
sponding profile size distributions and the cumulative profile size distribution func-
tions. The two sphere size distributions were calculated according to

q(R) 5 5O
2

j51
hj h(Rmin( j) 2 R)2(Rmax( j) 2 R)2j for R [ [Rmin( j), Rmax( j)]

0, else.

(26)

The parameters are listed in Table I. The order of magnitude of the spheres, as
well as the slice thickness (d 5 60 nm), have been chosen to be typical for TEM
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TABLE I
Parameters of the Unimodal and the Bimodal Sphere Size Distribution

Parameter Unimodal distribution Bimodal distribution

Rmin(1) 7 3 1028 m 9 3 1028 m
Rmin(2) 16 3 1028 m 15 3 1028 m
Rmax(1) 27 3 1028 m 29 3 1028 m
Rmax(2) 44 3 1028 m 35 3 1028 m

h1 20.0 20.0
h2 1.0 1.0

images of immiscible polymer blends. The results of the Monte-Carlo simulation,
i.e. the expected error EDh(h, l, n) in dependence on the regularization parameter
l and a histogram of the regularization parameter estimated with the SC-method,
are shown in Fig. 2 for the unimodal and in Fig. 3 for the bimodal sphere size
distribution. In addition, Figs. 4 and 5 show typical results for both distributions if
they are unfolded from samples with n 5 1000, 2000, and 5000 profile radii.

Figures 2 and 3 show that the expected error EDh(h, l, n) has a minimum which
is at values about l P 10210 for the examples presented. If the regularization
parameter is increased, the bias introduced by the regularization becomes larger
and the expected error EDh(h, l, n) increases until it reaches an upper bound. If
the regularization parameter is decreased, the expected error EDh(h, l, n) increases
because the statistical error becomes larger. In principle, the statistical error be-
comes arbitrarily large for a vanishing value of the regularization parameter, since
the inversion of Eq. (10) is an ill-posed problem. In practical computations, the
expected error EDh(h, l, n) is, however, bounded because of numerical approxima-
tions and discretization effects.

The behaviour of the expected error EDh(h, l, n) for the case that constraints
are taken into account is essentially the same as for the case that the constraints
are neglected. Except for very large values of the regularization parameter, the
constraints lead to a reduction of the expected error EDh(h, l, n). They have,
however, nearly no influence on the regularization parameter l at which the mini-
mum of the expected error EDh(h, l, n) is located. Within the estimation of the
optimal regularization parameter the constraints can, therefore, be neglected.

The values of the regularization parameter estimated with the SC-method differ
about two orders of magnitude within each simulation. Nevertheless, all values are
around the minimum of the expected error EDh(h, l, n) and there was no sample
where the estimation of the regularization parameter with the SC-method led to
an unacceptable result. A comparison of the regularization parameters obtained
for different Monte-Carlo simulations shows that they become smaller if more
profiles are used for unfolding the sphere size distribution. This is in agreement
with the observation that the value of the expected error EDh(h, l, n) in the
minimum decreases and the minimum moves toward smaller regularization parame-
ters in this case. The unfolded sphere size distributions become, therefore, more ac-
curate.
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FIG. 2. Expected error of the unimodal sphere size distribution obtained from 1000 (a), 2000 (b),
and 5000 (c) profile radii, together with a histogram of the regularization parameters estimated with
the SC-method. The expected error EDh(h, l, n) has been computed for the case that the constraints
are neglected (solid line) as well as for the case that they are taken into account (dashed line).
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FIG. 3. Expected error of the bimodal sphere size distribution obtained from 1000 (a), 2000 (b),
and 5000 (c) profile radii, together with a histogram of the regularization parameters estimated with
the SC-method. The expected error EDh(h, l, n) has been computed for the case that the constraints
are neglected (solid line) as well as for the case that they are taken into account (dashed line).
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FIG. 4. Typical result for the unimodal sphere size distribution when using 1000 (a), 2000 (b), and
5000 (c) profile radii. The straight line marks the thickness d of the slices.

Figures 4 and 5 confirm that the unfolded sphere size distributions become more
accurate if the number of profile radii is increased. To obtain a satisfying result for
the unimodal sphere size distribution, 1000 profile radii are sufficient. In contrast
to this, the small peak of the bimodal sphere size distribution can only roughly be
unfolded with 1000 profiles. However, a good result is obtained with 5000 profiles.

5. APPLICATION TO EXPERIMENTAL DATA

The experimental data have been obtained from a series of polymer blends. They
consist of 92.5% polymethylmethacrylate and 7.5% polystyrene with the former
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FIG. 5. Typical result for the bimodal sphere size distribution when using 1000 (a), 2000 (b), and
5000 (c) profile radii. The straight line marks the thickness d of the slices.

component being the matrix and the latter one building the inclusions. Except for
one blend abbreviated by B075, the blends have been made compatible with the
block copolymer poly(cyclohexylmethacrylate-b-methylmethacrylate). The per-
centage amount of block copolymer added was 5%, 10%, 15%, and 20%, and accord-
ingly, the compatibilized blends are denoted by B075CM05, B075CM10, B075CM15,
and B075CM20, respectively. As one part of the block copolymer is compatible
with the matrix and the other one with the inclusions, it is deposited at the interface
between both blend components affecting the size of the inclusions.

In order to characterize the morphology of the blends, thin slices of 60 nm
thickness were prepared and TEM images were taken. A typical example for the
uncompatibilized blend B075 is shown in Fig. 6. The radii of the profiles in the
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FIG. 6. TEM image of the uncompatibilized blend B075.

TEM images were determined using a commercial image processing software. In
that way 2000 up to 4000 profile radii were measured for each blend. As the
resolution limit depends on several settings of the microscope, as well as on some
parameters of the image processing software, a different value was used for each
blend. This value was chosen slightly larger than the smallest profile radii and all
profile radii below this limit were discarded. Figure 7 shows the empirical cumulative
profile size distribution function and Figure 8 shows the sphere size distributions
unfolded with the method presented in Section 3. The number of profiles and the
resolution limit used in the computations are summarized in Table II. This table
also contains the values obtained for the regularization parameter.

For all samples a unimodal sphere size distribution was obtained. A comparison
of the sphere size distribution shows that the size of the inclusions becomes smaller
by addition of the block copolymer. For the sample B075 the maximum is at 80
nm, whereas it is only about 40 nm for the sample B075CM20. The width of the
sphere size distribution is also affected by the block copolymer and decreases
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FIG. 7. Empirical cumulative profile size distribution function for the blends B075 (a), B075CM05
(b), B075CM10 (c), B075CM15 (d), and B075CM20 (e).

considerably. The results demonstrate clearly that the new method is a valuable
tool for the analysis of such data.

6. CONCLUSIONS

In this contribution, a method for unfolding sphere size distributions given a
sample of profile radii has been proposed which combines the advantages of kernel
estimators with those of regularization methods. The essential concept of this
method consists in the calculation of the empirical cumulative distribution function
of the profile radii and the determination of the corresponding sphere size distribu-
tion with Tikhonov regularization. The method leads to a nonnegative and properly
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FIG. 7—Continued

normalized sphere size distribution. In addition, the method allows for automatically
estimating the regularization parameter with the SC-method.

Using Monte-Carlo simulations it has been demonstrated that the method is
reliable and leads to properly unfolded sphere size distributions. In particular, these
simulations show that good values for the regularization parameter are obtained
with the SC-method. Finally, the sphere size distributions of several polymer blends
have been unfolded from TEM data. The application to experimental data confirms
the excellent results of the Monte-Carlo simulations and demonstrates that the new
method is a valuable tool for data analysis.

Within the method presented, the integral equation relating the cumulative profile
size distribution function to the sphere size distribution can be replaced by any
other linear integral equation. Similar to the smoothed EM-approach described in
[34], the method may, therefore, also be applied to similar problems as, e.g., image
reconstruction in emission tomography. It is an interesting question to be studied
in the future whether such problems can also be solved with the method presented.

APPENDIX

For the numerical computations the functions and operators must be represented
by finite-dimensional quantities. This can be done by approximating the integrals
and derivatives by sums and difference coefficients. A simple approximation with
a low degree of convergence is sufficient, because the approximation error is small,
compared to the error caused by the regularization or the sample statistics.
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FIG. 8. Sphere size distribution for the blends B075 (a), B075CM05 (b), B075CM10 (c), B075CM15
(d), and B075CM20 (e). The straight line marks the resolution limit «.

With such an approximation the scaled sphere size distribution h(R) is given by
the b coefficients h1, ..., hb :

hj 5 h(Rj), j 5 1, ..., b, (27)

Rj 5 « 1 ( j 2 1)DR , j 5 1, ..., b, (28)

DR 5
Rmax 2 «

b 2 1
. (29)

Using these coefficients (Kh)(r) can be approximated according to

(Kh)(r) 5 Ob

j51
Kj (r)hj (30)
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FIG. 8—Continued

with

Kj (r) 5 52DR Sd
2

1 ÏR2
j 2 r2D, r # Rj ,

0, r . Rj .

(31)

If the profile size distribution p(r) 5 (Kh)9(r) is needed, there arise, however,
difficulties, because the derivative of Kj (r) does not exist at r 5 Rj . These difficulties

TABLE II
Number of Profiles and Resolution Limit Used to Obtain the

Sphere Size Distributions Shown in Fig. 8

Number of Resolution limit «, Regularization
Blend profiles n (nm) parameter l

B075 4104 39.0 2.73 3 10213

B075CM05 2311 26.0 1.09 3 10213

B075CM10 3557 25.0 3.19 3 10215

B075CM15 4270 25.0 1.94 3 10215

B075CM20 3517 25.0 3.47 3 10216

Note. The value estimated with the SC-method for the regularization parameters l is also listed.
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can be avoided by assuming linear interpolation in the intervals between two succes-
sive coefficients hj ,

h(R) 5 Ob

j51
hj wj (R) (32)

with

w1(R) 5 D21
R H(R2 2 R), « # R # R2,

0, R2 , R # Rmax ;

wj (R) 5 D21
R 5

0, « # R , Rj21

(R 2 Rj21), Rj21 # R , Rj

(Rj11 2 R), Rj # R # Rj11

0, Rj11 , R # Rmax

6 , j 5 2, ..., b 2 1; (33)

wb(R) 5 D21
R H0, « # R , Rb21,

(R 2 Rb21), Rb21 # R # Rmax .

Evaluating Kj (r) 5 (Kwj)(r), the expressions

K1(r) 5 F (R2, R1, r) 2 F (R2, R2, r)

Kj (r) 5 F (Rj11, Rj , r) 2 F (Rj11 , Rj11, r) (34)

1 F (Rj21, Rj , r) 2 F (Rj21, Rj21, r), j 5 2, ..., b 2 1

Kb(r) 5 F (Rb21, Rb, r) 2 F (Rb21, Rb21, r)

with

F (r, R, r) 5 D21
R 5

r

2
(r2 ln (R 1 ÏR2 2 r2) 2 RÏR2 2 r2)

1
d
4

(R 2 r)2 1
1
3

(R2 2 r2)3/2, R . r,

Sd
4

(r 2 r)2 1
r

2
r2 ln rD, R # r,

(35)

are obtained in this case, and the profile size distribution p(r) 5 (Kh)9(r) can be
computed straightforwardly by differentiation.

Starting with these expressions, the quantity V(l) of Eq. (13) has been approxi-
mated by

V(l) 5 Dr (Kh 2 I 1 P̂)2 1 lDR(Lh)2. (36)
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To obtain the first term, the integration associated with the norm i?i2 has been
replaced by a sum. With

ri 5 « 1 (i 2 1)Dr , i 5 1, ..., a, (37)

Dr 5
Rmax 2 «

a 2 1
(38)

the coefficients of the matrix K, the vector I, and the vector P̂ are given by

Kij 5 Kj (ri), i 5 1, ..., a; j 5 1, ..., b (39)

Ii 5 1, i 5 1, ..., a (40)

P̂i 5 P̂(ri), i 5 1, ..., a. (41)

The second term has also been obtained using a sum, instead of the integration
associated with the norm i?i2. In addition the matrix L with coefficients

Lij 5
1

D2
R

(dij 1 d(i12)j 2 2d(i11)j), i 5 1, ..., b 2 2; j 5 1, ..., b, (42)

has been introduced as a discrete approximation of the second derivative repre-
sented by the operator L in Eq. (13).

Given the expression (36) for V(l), computation of the scaled sphere size distribu-
tion for a given value of the regularization parameter poses no problem. If no
constraints must be taken into account, the normal equations associated with mini-
mization of V(l) lead to

ĥl 5 K 21(l)(I 2 P̂) (43)

with

K 21(l) 5 SK tK 1
DR

Dr
lLtLD21

K t. (44)

Positivity and proper normalization can be introduced by performing minimization
of V(l), subject to the constraints

Ob

j51
K1j hj 5 1 (45)

hj $ 0, j 5 1, ..., b. (46)

This quadratic optimization problem can be solved with a QP-algorithm [35] which
can be found in well-known numeric libraries.
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In order to estimate the regularization parameter defined by the SC-method,
Eq. (22) has been solved with a standard algorithm for finding roots. Within the
optimization, the quantity has been evaluated using the approximations intro-
duced above:

EDh(ĥl, e, n) 5 DR(ĥl 2 K 21(e)(I 2 Kĥl))2

1
Dr DR

n Oa

i51
(K 21(e)ui)2(K9ĥl)i (47)

2
DR

n
(K21(e)(I 2 Kĥl))2.

The vector ui and the matrix K9 are given by

uij 5 H1, Rj $ ri

0, Rj , ri
J , i 5 1, ..., a; j 5 1, ..., b, (48)

K9ij 5 K9j (ri), i 5 1, ..., a; j 5 1, ..., b. (49)

The other quantities have been defined above. It should be noted that the estimation
of the regularization parameter is rather time consuming if K21(l) is calculated by
a matrix inversion in each iteration. Using the matrix decomposition described in
[36] which is a kind of generalized singular decomposition, the computations are
less consuming, because the matrix K21(l) can be evaluated for different values of
the regularization parameter without further matrix inversions.

Neglecting the constraints (45) and (46), the expression

s 2(Rj) 5
Dr
n Oa

i51
(K21(l)ui)2

j (K9ĥl)i

2
1
n

(K21(e)(I 2 Kĥl))2
j (50)

is obtained for the variances s 2(Rj) (compare Eq. (25)). The positivity constraints
have, however, a large influence on the unfolded scaled sphere size distribution ĥl

and on the corresponding variances s 2(R1), ..., s 2(Rb). This influence is represented
by the set M of active constraints (hj 5 0 for j [ M ) obtained after minimization
of V(l) with respect to the constraints (45) and (46). This set has been taken into
account when computing the variances s 2(Rj); for j [ M the variances s 2(Rj) were
assumed to be zero. To compute the other variances, the columns of the matrices
K and L belonging to an active constraint have been removed, and the variances
s 2(Rj) for j Ó M were computed according to Eq. (50) using the modified matrices.
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